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Abstract. The microstructure of two-phase disordered media can be characterised in terms 
of a set of n-point matrix probability functions S, which give the probability of finding n 
points all in the matrix phase. We obtain, for the first time, an exact analytical expression 
for S, for a distribution of equi-sized rigid rods in a matrix at any density and for all 
values of its argument. We evaluate, also for the first time, Sz for a distribution of equi-sized 
rigid discs in a matrix, for a wide range of densities. Using these results for S, and rigorous 
upper and lower bounds on S3,  one may obtain bounds on S, for distributions of rigid 
rods and discs. The one- and two-dimensional results obtained here are compared to the 
three-dimensional results of Torquato and Stell at certain particle volume fractions. 

1. Introduction 

We consider characterising the microstructure of those two-phase random media in 
which one of the phases consists of inclusions or particles distributed throughout a 
matrix phase (which may be fluid, solid, or void) according to some probability density 
function. In particular, the set of probabilities that have been termed n-point matrix 
probability functions S,  (Torquato and Stell 1982), which give the probability of 
simultaneously finding n points in the matrix phases are fundamental to the study of 
bulk properties of two-phase disordered media, such as the dielectric constant of 
suspensions, the diffusion coefficient and the permeability of porous media and the 
elastic moduli of composites (Brown 1955, Prager 1961, Weissberg and Prager 1962, 
Prager 1963, Beran 1968, McCoy 1970 and Milton 1982). However, because of a lack 
of reliable assessment of the two-point and three-point matrix functions for most useful 
models, progress in the prediction of bulk properties of disordered media continues 
to be hampered. The quantities S2 and S3 have recently been evaluated and approxi- 
mated for three-dimensional two-phase systems of randomly centred spheres (Torquato 
and Stell 1983a), and rigid spheres (Torquato and Stell 1984). Corresponding computa- 
tions in lower dimensions have not hitherto been carried out. 

In this study, we consider obtaining S2 and S3 for distributions of equi-sized rigid 
rods and rigid discs in a matrix. A two-dimensional system of rigid discs is a useful 
model of a three-dimensional material of rigid, infinitely long, parallel circular cylinders 
in a matrix (e.g., fibre-reinforced material) (Hill 1963). A one-dimensional medium 
of rigid rods is a model of a three-dimensional two-phase system of infinite plane slabs 
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parallel to each other. In one sense, investigations of the S, for one-dimensional 
systems are of mathematical interest, since, in the context of predicting bulk properties 
of random media which depend upon the S,, effective properties are known exactly 
(Beran 1968). Study of one-dimensional media, however, may help to illuminate our 
understanding of the S ,  in the more complex cases of two and three dimensions, since, 
unlike the latter instances, we can often obtain exact, closed-form expressions for 
microstructural quantities associated with one-dimensional systems. 

In the following section, we give expressions for the S, in terms of n-particle 
distribution functions for rigid particles of any dimensionality. In 9 3,  we obtain, for 
the first time, an exact analytical expression for S z ( r )  for a distribution of rigid rods 
in a matrix at any density and for all r. In 9 4, we evaluate, also for the first time, 
S2( r )  for a distribution of rigid discs in a matrix, for a wide range of densities. Using 
the results of $ 9  2, 3, and 4, one may obtain rigorous upper and lower bounds on S3 
for distributions of rigid rods and discs. Finally, we compare our one- and two- 
dimensional results to the three-dimensional results of Torquato and Stell (1984) at 
particular particle volume fractions. 

2. Expressions for the S, for rigid particles 

For any statistically inhomogeneous two-phase random medium consisting of identical 
rigid particles (inclusions) dispersed throughout a matrix phase such that the location 
of each inclusion is fully specified by a position vector, Torquato and Stell (1982, 
1983b) have found that the probability of simultaneously finding n points at 
r , ,  rz,  . , . , r,, respectively, zll in the matrix phase is given by 

Here we have introduced a shorthand notation in which we indicate only the labels 
associated with position, The quantity d j  denotes the volume element dr,. The n- 
particle probability density pn(  1,  . , . , n )  characterises the probability of simultaneously 
finding a particle centred in volume element d l ,  another particle centred in d2, etc. 
Here m ( r )  is a step function which is unity whenever r is inside the particle and zero 
otherwise. For rods, discs and spheres 

m ( r ) =  6 ( ~ / 2 - r ) ,  (2.2) 
where r = Ir/, O ( r )  is the Heaviside step function, and where v is the length in one 
dimension and the diameter in two or three dimensions. 

In the case of statistically homogeneous media, the p, and, hence, the S, are 
translationally invariant and for such distributions it is convenient to define another 
distribution function, g,, such that p"g, = pn (where p is the density). For statistically 
homogeneous distributions of rigid rods, discs or spheres, Torquato and Stell (1983b) 
have shown that (2.1) simplifies for n = 1, 2 or 3 in such a way that 

S , = l - p U ,  (2.3) 

S,( 1,2) = 1 - p U,( 1,2) + p V (  1,2) (2.4) 
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and 

s3= (1,2,3)  = 1 -pu3 (  1,2,  3 ) S p 2 [  v(1 ,2)+  v( 1 ,3)+  V(2,3) 

- W (  1 ; 2,3)  - W(2; 1,3) - W(3; 1,2)] - p 3 X (  1,2,3),  

where 

d4 m(i ,3)m(j ,4)gz(3,4)  

d4 m( i, 3) m ( j ,  4)m( k, 4)g2(3, 4) 

and 

X(i,j, k )  = d3 d4 d5 m(i, 3)m(j ,  4)m(k, 5)g3(3, 4,5).  J J J  

( 2 . 5 )  

Here U,( 1 , .  . . , n )  is a region of space which is the union of n particles. For 
example, U2(r) in one, two and three dimensions is given for r a O  by 

U,( r )  = 2cr - (cr - r ) O ( c r  - r )  (2.9) 

(2.10) 

U,(r) = : T c r 3 - : . r r c r 3 ~ 1  - I r a - ’ + f r 3 a - 3 ] ~ ( c r - r ) ,  (2.1 1 )  

U,(,-) =;Tcr2-I(+’[qn--sin-’ TO-’  - r(+-’(I - r ’ a ” ) ” * ] ~ ( a -  r)  

and 

respectively. 
Note that since the integrals V, W and X as given in (2.6), ( 2 . 7 )  and (2.8), 

respectively, involve either the 2-particle or 3-particle distribution functions, they 
depend upon all powers of p. In this article, we evaluate V and, thus, S, for all 
densities in one dimension and for a very wide range of p in two dimensions. We do  
not evaluate either W or X in this study, which implies that S,, for arbitrary values 
of its arguments, is not exactly determined through order p z  here. We can, however, 
apply rigorous upper and lower bounds on S, (Torquato and Stell 1984) which are 
given in terms of known quantities and S2 (the function we determine in this paper), 
namely, 

S3( 1,293 3 P [Iz( 1 I 2 )  i- I,( 1,3) - 1 I 2,3 - UI I + S2(2,3) (2.12) 

and 

S, ( 1,2, 3 1 6 1 - 3 S, + S,( I ,  2) + S,( 1, 3) + S,( 2, 3) - pZ,( I ,  2, 3), (2.13) 

where 

In (2.141, dt” is a set of position labels, n and m are, respectively, the number of 
labels in A” and A, and the sum is over all subsets of dV*. Clearly, I,, is the region of 
space which is the intersection of n particles. Comparing the upper and lower bounds 
to the exact relation (2.51, we see that (2.12) and (2.13) are exact through order p. An 
analytical expression for U, in one dimension is trivial to obtain and in two dimensions 
has been given by Rowlinson (1964). Both the lower bound (2.12) and the upper 
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bound (2.13) take on the exact value of SI (Prager 1961) when all three points with 
positions 1, 2 and 3 coincide. Moreover, the lower bound (2.12) takes on the exact 
value of S 2 ( i , j )  (Prager 1961) when the points with positions j and  k coincide for all 
i # j (  i = 1, 2 or  3) except when points with positions 2 and 3 coincide. Using the 
results of this article, therefore, one may obtain rigorous upper and  lower bounds on 
S3 for distributions of rigid rods and discs in a matrix which are exact under the 
conditions stated above. 

Before closing this section, we comment on the integrals W, equation (2.7), and  
X ,  equation (2.8), which are the remaining non-trivial quantities which contribute to  
S3. Although W is a non-trivial integral, it most likely can be obtained analytically 
in one dimension and can be evaluated numerically in higher dimensions. The integral 
X ,  however, requires knowledge of the 3-particle distribution function, which in 
one dimension is known analytically (Salsburg et a1 1953) and in higher dimensions 
is not known analytically. In two and three dimensions one must resort to analytical 
approximations for g3 such as the superposition approximation (Hansen and  McDonald 
1976). 

3. Evaluation of S, in one dimension 

Here we obtain an  exact analytical expression for S,  for a statistically isotropic 
distribution of rigid rods in a matrix at  arbitrary values of density. Since U, in one  
dimension is given by (2.9), we need only evaluate the double-convolution integral V 
as given by (2.6). In one dimension the 2-particle distribution function for an  
equilibrium distribution of rigid rods of length cr is known analytically (Zernike and  
Prim 1927) and  is given by 

where 

( r -  ku)k-’ 
h k ( r ) =  e ( r - k u )  exp[-(r- ko)/aI,  a k ( k  - l ) !  

with 

a = ( l - f ~ ) c r / q  and  f ~ = p u .  

(3.1) 

Direct integration of (2.6) using (2.2) and  (3.1) yields 

r - a[ 1 - exp( -r/a)] ,  O s r c u  
cr-a[l - exp( - r / a ) ]+ ( r -U)  exp[- ( r -a ) /a ] ,  u c r ~ 2 u  
- a + uA(r)  - 2aB( r )  + a C ( r ) ,  ju c r G ( j  + 1 ) v, j 2 2  (3.4) 

where 

I+’ exp{-[r-(k- l )u ] / a}  sa’ 
k =  I s = l  ( k - s ) !  

’ exp{-[r- k u ] / a }  sa 

A ( r ) =  2 - a k - l  c- [r - ( k  - l ) ~ ] ~ - ~  (3.5) 

a k - l  [ r  - kuIk-’ 
s = l  ( k - s ) !  B ( r ) =  c 

k = l  
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and 

j - l  exp{-[r-(k+l)a]/a} sas 
a k - l  E--- [ ~ - ( k + l ) a ] ~ - ~ .  (3.7) 

s=l (k-s)! C ( r ) =  c 
k = l  

Substitution of (2.9) and (3.4) into (2.4) yields S, for an equilibrium distribution 
of rigid rods at arbitrary p. In one dimension the particle volume fraction 7 = p u  = 1 - SI 
may take on values between zero and the close packing value of unity. When 7 = 1 we 
find that S z ( r )  = 0 for all r, as expected. This feature is not exhibited in higher 
dimensions since the closepacking 7 in two or three dimensions is less that unity and 
therefore implies that S2( r) can never be equal to zero for all r in these instances. We 
plot in figure 1 S,(r) as a function of r, as computed from the result of this section, 
at 7 values of 0.2, 0.3 and 0.8, where cr is taken to be unity. The two-point matrix 
probability function for rigid particles, in any dimension, is a damped-oscillatory 
function which oscillates about its long-range value of S: = (1 - 7)2 and tends to sl as 
r + 0. In the one-dimensional case, the correlation length, defined to be the distance 
at which the quantity ( S,( r) - S:) becomes negligible, is seen to increase as 7 increases 
up to 7 = 0.95. For values of 7 greater than about 0.95 but less than or equal to unity, 
the correlation length decreases as 7 increases, vanishing completely when 7 = 1 for 
reasons mentioned above. Note that the first derivative at r = 1, the location of the 
first and absolute minimum, is discontinuous in one dimension. The location of the 
first minimum is independent of 7 in this instance. As we shall see, neither of the last 
two statements holds for higher dimensions. 

0 1 2 3 4 5 
r 

Figure 1. The two-point matrix probability function S, ( r )  as a function of r for an 
equilibrium distribution of rigid rods in a matrix at 7 = 0.2, 0.5 and 0.8. 

4. Evaluation of S, in two dimensions 

In this section, we evaluate V( r) and, thus, S,( r) for a statistically isotropic distribution 
of rigid discs in a matrix over a wide range of densities. The evaluation of the 
double-convolution integral V in two dimensions is considerably more difficult than 
the corresponding calculation in one or three dimensions. For an equilibrium distribu- 
tion of rigid rods we obtained, in Q 3, an exact analytical expression for V( r) and S2( r) 
using an analytical expression for g2( r). For an equilibrium distribution of rigid spheres 
Torquato and Stell (1984) used the Verlet-Weis (Verlet and Weis 1972) semi-empirical 
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modification of the Percus-Yevick (Percus and Yevick 1958) radial distribution function 
to compute S2( r )  for all p corresponding to the disordered state. The Omstein-Zernike 
(02) equation in three dimensions yields a n  analytical result in the Percus -Yevick 
approximation. 

In two dimensions, however, the oz equation can not be solved analytically in 
any approximation and therefore solutions of it must be obtained numerically. Lado 
(1968) has solved the oz equation in the Percus-Yevick approximation using numerical 
Fourier transforms for distributions of rigid discs. 

We define the two-dimensional Fourier transform F( k )  of a circularly symmetric 
function F (  r )  by 

i ( k )  = 277 los d r  rF(r)Jo(kr),  (4.1) 

where J o ( x )  is the zeroth-order Bessel function of the first kind and k is the wavenumber. 
The inverse Fourier transform of F ( k )  is given by 

. r l -  

(4.2) 

Equations (4.1) and (4.2) are Hankel transforms. 

transform of (2.6) and inverting 
Since (2.6) is a double-convolution integral, we have upon taking the Fourier 

where 

(4.3) 

and & ( k )  is the Fourier transform of the total correlation function h ( r )  = g 2 ( r )  - 1 .  
Given i( k ) ,  the evaluation of V( r )  has been reduced to a one-dimensional quadrature. 
We evaluate (4.3) using the numerical Fourier-transform technique given by Lado 
(1971) and  employing the Percus-Yevick (( k). The rules for the numerical integration 
are similar to the trapezoidal rule, but with the intervals determined by the zeros of 
the orthogonal basis functions. Evaluation of (4.3) in conjunction with (2. I O )  enables 
us to compute the Percus-Yevick S2 from (2.4) for a wide range of densities. 

In figure 2 we plot S,(r) as a function of r for such a distribution of rigid discs of 
unit diameter at 7 = 0.2, 0.4 and 0.6, where 7 = p77a2/4 = 1 - S,. In  table 1 we tabulate 
S 2 ( r )  for rigid discs at various values of r and at 7 values between and  including 0.1 
and 0.7 in increments of 0.1. The particle volume fraction of 0.7 is slightly higher than 
the rigid-disc phase transition ( 7  = 0.69) at which rigid-disc ordering is expected on 
the basis of computer-simulation studies (Wood 1968) and therefore corresponds to 
a metastable disordered (i.e., glassy) state for which the close-packing 7 is about 0.82 
(Berryman 1983). 

Figures 3 and 4 compare S2 in one and two dimensions at 7 = 0.1 and 7 = 0.5, 
respectively, as computed from this study, to the corresponding three-dimensional 
cases obtained by Torquato and Stell (1984). The two-point matrix probability function 
for rigid discs and  for rigid spheres are qualitatively similar to one another. Unlike 
the one-dimensional case, the first derivative at the first minimum in either two or  
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0 1 2 3 4 5 
r 

Figure 2. The two-point matrix probability function S,( r )  as a function of r for a distribution 
of rigid discs in a matrix, in the Percus-Yevick approximation, at 77 = 0.2, 0.4 and 0.6. 

Table 1. S , ( r )  as a function of r for a distribution of rigid discs in a matrix at 77 = 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6 and 0.7 in the Percus-Yevick approximation. 

r 77 =0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.000 
0.256 
0.498 
0.759 
1 .oo 
I .24 
1.50 
1.76 
2.01 
2.25 
2.51 
2.75 
3.01 
3.25 
3.51 
3.75 
4.00 
4.26 
4.50 
4.76 
5.00 
5.26 
5.50 
5.76 
6.01 

0.9000 
0.8680 
0.8408 
0.8174 
0.8063 
0.8085 
0.8098 
0.8102 
0.8101 
0.8100 

0.8000 
0.7369 
0.6856 
0.6442 
0.6278 
0.6366 
0.6408 
0.641 1 
0.6402 
0.6398 
0.6399 
0.6400 

0.7000 
0.607 1 
0.5361 
0.4838 
0.4689 
0.4876 
0.4905 
0.4923 
0.4893 
0.4890 
0.4899 
0.4903 
0.4902 
0.4900 

0.6000 
0.4796 
0.3952 
0.341 I 
0.3342 
0.3636 
0.3686 
0.3613 
0.3565 
0.3583 
0.3610 
0.3610 
0.3599 
0.3595 
0.3599 
0.3602 
0.3601 
0.3600 

0.5000 
0.3557 
0.2673 
0.2215 
0.2273 
0.2635 
0.2598 
0.2462 
0.2433 
0.2505 
0.2535 
0.2506 
0.2482 
0.2493 
0.2509 
0.2506 
0.2497 
0.2496 
0.2501 
0.2503 
0.2500 

0.4000 
0.2383 
0.1587 
0.1305 
0.1486 
0.1811 
0.1636 
0.1497 
0.1551 
0.1668 
0.1631 
0.1564 
0.1573 
0.1622 
0.1620 
0.1588 
0.1584 
0.1606 
0.1611 
0.1597 
0.1592 
0.1601 
0.1606 
0.1600 

0.3000 
0.1330 
0.0777 
0.0695 
0.0920 
0.1078 
0.0829 
0.0807 
0.0936 
0.0988 
0.0855 
0.0845 
0.0929 
0.0946 
0.087 1 
0.0869 
0.0918 
0.0925 
0.0884 
0.0882 
0.09 12 
0.0914 
0.0890 
0.0889 
0.0907 

three dimensions is continuous. In the latter two cases, moreover, the location of the 
first minimum r, monotonically decreases from its low-density limit of r ,  = 1 (see 
figure 3) as 7 increases. For arbitrary 7 in the range O s  7 6 0.62 (where 0.62 corre- 
sponds to the approximate random close-packing 7 value in three dimensions), we 
have r m 3 6  rm2< r,,, where rmi is the location of the first minimum in i dimensions. 
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1 0  
I 

I 
2 3 4 5 

0.7l , 
0 

r 
Figure 3. The two-point matrix probability function 
S, ( r )  as a function of r for distribution of rigid rods 
(....) and discs ( - - - )  in a matrix at ?=0.1, as 
calculated from this study, compared to the corre- 
sponding result of Torquato and Stell (1984) for rigid 
spheres (-) in a matrix. 

I 
O ST---- q = o  5 I 

I I 
0 1 2 3 L 5 

r 

Figure 4. The two-point matrix probability function 
S,( r )  as a function of r for distributions of rigid rods 
(....) and discs ( - - - )  in a matrix at 7) =0.5, as 
calculated from this study, compared to the corre- 
sponding result of Torquato and Stell (1984) for rigid 
spheres (-) in a matrix. 

The smallest value of r,,,,, which occurs at r ]  = 0.62, is about 0.6 (Torquato and Stell 
1984). In contrast to the case of rigid rods the correlation length for rigid discs and 
spheres, increases as r] increases for all realisable values of r].  
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